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In the present classification the different types of physicochemical t ransformations 
are dealt with which may be useful in studying different substances by the methods 
of thermal analysis. Equations were derived for describing the correlation between 
the thermodynamic characteristics and the parameters of the differential thermal anal- 
ytical (DTA) peaks for two classes of physicochemical transformations. 

All experiments were conducted on DTA-4 instruments constructed in the Baykov 
Institute of Metallurgy, the USSR Academy of Sciences. 

A large body of literature exists on the problems of using thermal analysis for 
the study of different types of physico-chemical transformations. There is no need 
to discuss the published papers since they have been amply reviewed in widely- 
known monographs [1 -3] .  

According to the thermodynamic classification by Ehrenfest covering reversible 
processes, phase transitions of the 1st order are accompanied by an enthalpy jump 
and the tendency of the heat capacity to infinity; phase transitions of the 2nd order 
have no enthalpy jump, i.e. latent heat is neither liberated nor absorbed, but the 
heat capacity does undergo a jump. 

Our classification is based on the same principle, but the scope of the transforma- 
tions considered is much greater due to the inclusion of irreversible processes; 
thus, it covers all the possible types of physico-chemical transformations. 

In spite of the differences in the mechanisms, all physico-chemical transforma- 
tions can be divided into two large groups. 

Transformations of the first group are characterized by the liberation or absorp- 
tion of the latent heat of transformation. This group includes transformations of 
the 1 st order, boiling, recrystallization, decomposition of solid solutions, and chem- 
ical reactions. 

Transformations of the second group are characterized by an anomalous beha- 
viour of the sample heat capacity in the stage where transformation takes place. 
The latent heat is neither liberated nor absorbed in this case. This group includes 
transformations of the 2nd order, ordering, magnetic transitions, and martensite 
transformations. 
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We have used such a division of transformations into two groups in order to 
derive mathematical relationships between the parameters measured in thermal 
analysis (temperature and temperature difference) and the thermodynamic func- 
tions which characterize given transformations. 

Transformations of the first group 

The following heat balance equation holds when no transformation takes place : 

b0 " To "dz = Mo " Co "dTo (1) 

where bo is the function of heat exchange responsible for heat transfer from the 
heater to the sample; A To is the difference in temperature between the block and the 
sample at the moment z; M0 is the mass of the sample; Co is the heat capacity of 
the sample; and Tois the temperature of the sample. When there is a transformation: 

bo(ATo + AT)dz = MoCod(To - AT) + MoAHod~ (2) 

where AT is the deviation of the temperature of the sample from linear, caused 
by the transformation; a is the fraction of the reacted compound or of the newly- 
formed phase; and AHo is the specific latent heat of the transformation. 

By solving Eqs (1) and (2) simultaneously, we obtain: 

dAT AHo da bo 
. . . . .  A r.  (3) 

d z Co d z MoCo 

This linear homogeneous differential equation has a solution: 

Mo " A Ho d~ 
A T = bo dz " (4) 

da 
Initially: z = 0, ~-z-= 0, and  AT = O. 

Equation (4) is the main equation for transformations of the first group; it re- 
lates a thermal analysis parameter (AT) to physico-chemical parameters of the 

transformation IAH0, ~ t  �9 

The peak area under the curves AT(z) and AT(T) is, respectively: 

T~ 

AS~ = f AT �9 d'r - Mo "boAH~ 

T2 

AST f A T ' d T -  Mo'AHo 
bo V 

T1 

where V is the rate of sample heating. 

(5) 

(6) 
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The following is true for the peak ampli tude:  

) 
= b ~ "  ~ ' - T  m a x "  ( 7 )  

Equations (4), (5), (6) and (7) coincide in form with similar equations given in 
[2], which have been derived for specific boundary  conditions o f  heat exchange, 
Here we are considering a general case. 

To describe chemical reactions and processes o f  decomposi t ion o f  solid solu- 
tions, use is often made of  the Arrhenius '  equat ion in its simplest fo rm:  

d~ - k " e -kr 
dz 

where k is the rate constant.  
For  this case an equation is given in (2) in an approximate form (E >> RT, 

where E is the activation energy): 

A T m a  x = A " V ( 8 )  

where A is a constant.  
The validity of  this relationship can be confirmed (Fig. 1) by the experimental 

data obtained for the curve ATmax(V ) plotted for kaolinite in accordance with 
[4], and for the curve ATma• plotted for quartz in accordance with [5]. 
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Fig. 1. Dependence of the DTA peak amplitude (ATmax) on the heating rate (V) and the 
sample mass (m) for kaolinite and a mixture of quartz and aluminium oxide powders; the 

curve is plotted according to the data of Spell et al., and Grimshaw and Roberts 
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Fig. 2. Effect of heating rate (V) and sample mass (m) on the DTA peak amplitude (A Tm~) 
and square of the amplitude for the melting of indium 
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Fig, 3. Effect of heating rate (V) and sample mass (m) on the DTA peak amplitude (ATmax) 
and the square amplitude (AT2ax) for the e--+ 7 transformation of iron 
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All the above is valid for  t ransformat ions  proceeding rather  slowly. At high 
dc~ 

rates ~ ~> V, and consequently dTo = 0 (Smit t  problem) Eq. (8) will have another  

f o r m .  
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Fig. 4. DTA peak anaplitude (ATmax) and square amplitude (AT~a• as functions of the 
latent specific heat of melting for some low-melting metals 

After simple t ransformat ion,  the area  under the curve To(z) extended in t ime 
can be written as:  

X/ 2 " A Ho " Mo 
Az = boy V (9) 

Then : 

AVo,.x = / i -  AH,," MoV (10) 
X/ bo 

For the case of  an infinite cylinder at b0 = 47rh, where h is the cylinder height, 
we have" 

/ 2 ~ H o  �9 iV/,," V 
A T, nax = /X/ - ~ : h ' , ~  (11) 

The validity of  this equat ion can be shown by analysis of  the relationships 
ATmax(Mo), ATm,x(V), and ATmax(AHo). 

The first two relationships are confirmed by the data which we have obtained 
for the melting process of  indium and for the c~ -4 7 t ransformat ion  in iron (Figs 
2 and 3). 

The relationship ATm~,,(AHo) was suppor ted  by the measurements  per formed on 
some low-melting metals (Fig. 4). 
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The theoretical relationships are fulfilled very well in practice. This is seen in 
the plots AT2a, f (V) ,  AT2ax(Mo) and AT~(AHo) given in the same Figures. 

On account of an important circumstance we shall return to some of these 
relationships later. 

In deriving the relationships obtained earlier by other authors, we paid attention 
to some peculiarities in the behaviour of ATma, for slow and fast processes and 
confirmed them experimentally. However, in spite of the fact that the relationships 
we obtained in this section are known, we have shown that the approach we used 
in deriving the main equations of thermal analysis is really satisfactory. This is 
especially important in derivation of the equations of transformations of the 
second group. 

Transformations of the second group 

Without transformation, Eq. (1) is valid: 

bo �9 ATo " dz  = Mo " CodTo �9 (12) 

When transformation does take place, we can write: 

b o " [ATo + AT)dz  = Mo(AC + Co)d(To - AT)  (13) 

where A C is the change in heat capacity in the transformation stage as compared 
with the usual run of the function Co(T). 

Solving Eqs (9) and (10), we have: 

Mo" AC dTo 
A T  -- - -  (14) 

b0 dz 

This linear homogeneous differential equation, similarly to Eq. (3), has a solu- 
tion: 

d A T  = bo . ( AC - " (15) 
dz Mo "(Co + AC) A T "  ,.~ o 

Initially: z = 0, AC = O, A T  = O. 

This is the main relationship for transformations of the second group. By analogy 
with (5) and (6), for the area under the curves AT(z) and AT(T)  we can write: 

rz T~ 

bo 
�9 t T1 

T~ T.~ 

~ .  AC �9 dT .  

Tt T~ 

(16) 

(17) 
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For the amplitude of the DTA peak: 

Mo" V 
A T m a  x - -  - -  A C r a a x .  ( 1 8 )  

b0 

It follows from Eq. (12) that the function AT is determined by AC. This was 
emphasized by Piloyan [2], who presented the experimental results for NaNO3 [6]. 

I NaNO~ 

a) 

L 1 I 1 ~ 2ZO 260 3100 31,0 

So-  , I , ,~ 220 260 .300 340 ~ 

o [  I I I 1 220 260 31OO 340 TemPerature ,*C 

Fig. 5. DTA (a), heat capacities (b), and thermal expansion coefficients (c) as functions of 
temperature for NaNO a [6] 

Figure 5 shows that the function AT(T0) is very similar in form to the functions 
C(T0) and ~'(T(,), where ~' is the coefficient of thermal expansion. The same conclu- 
sion can be made on the basis of our experimental results, which include the rela- 
tionships AT(~) and C(T0) for the ferromagnetic transitions in iron and nickel 
(Fig. 6), and the data for the process of melting of the bismuth-cadmium system 
(Fig. 7). 

The validity of the equations derived is shown for the analysis of the parameters 
of the DTA peaks observed during the magnetic transformation in iron (c~ ~ fl). 
Figure 8 illustrates the relationships ATma~(V) and Sx(V) for the (~ - ,  13) trans- 
formation in iron. It is seen that the experimental data are in a good agreement 
with theory. 

In conclusion, we shall give an example of the practical application of the 
relationships obtained. 

The thermogram of a typical alloy of the S i - S n - A s  system (3 at. ~o-77.6 
at. ~ -  19.4 at. ~o) has two peaks in the melting region. A special experiment was 
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Fig. 6. Heat capacity (a, b) and DTA (c, d) as functions of temperature for iron and nickel 
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Fig. 7. Heat capacity (a, b) and DTA (c, d) as functions of temperature for alloys of the 
bismuth-cadmium system 
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performed to prove that one of the peaks corresponds to the first group trans- 
formation, and the other one to the second group transformation. We measured 
ATm,~(V) for these peaks. Figure 9 shows that curve 1 corresponds to the transfor- 
mation of the first group, and curve 2 to the transformation of the second group. 
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Fig. 9. E f f e c t  o f  t h e  h e a t i n g  r a t e  o n  t h e  D T A  peak  amp l i t ude  f o r  t h e  alloy 3 at.  ~ Si - -  
77 a t . ~  Sn - -  19.4 a t , ~  As 
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The approach used by us can greatly decrease the number of samples for polt- 
ring the phase diagram, and help the investigator to understand the nature of the 
transformations recorded in DTA. 

Conclusions 

1. All physico-chemical transformations can be divided into two large groups. 
Transformations of the first group proceed with liberation (absorption) of latent 
heat and are described by the following equation: 

Mo" AHo d~ AT= 
b0 dz 

Transformations of the second group proceed without liberation (absorption) of 
latent heat, but are characterized by an anomalous change in heat capacity in the 
transformation interval. They are described by the equation: 

Mo. aC dTo 
A T = - -  

bo d~ 

This classification is convenient for studying physico-chemical transformations by 
the DTA method. 

2. The amplitude of the DTA peak for transformations of the group is expressed 
in the general case as: 

ATma x AH~176 ( d~z} 
= bo " ~--T max 

! 2 AHo M0 V 
w h i c h  for fast and slow processes takes the forms, ATma,, = X/ 

Zo 
and A Tma x = A " V, respectively. 

For transformations of the second group, the DTA peak amplitude is described 
a s :  

M 0 . V  
aTm.x = - - "  aCm.x .  

b0 

3. From the dependence of the DTA peak amplitude on the heating rate and the 
mass of the sample, it can be concluded to what group of transformations a given 
DTA peak belongs. This information can be useful for plotting phase diagrams. 
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Pea~oMe -- l]poBe/leHa KJlaccHqbrtattnfl pa3JlHqH~IX TnHOB (I)H314KO-XHMHqecKItX npeBpallteI~n~, 
KOTOpafl MO~KeT OKa3aTbC~ y~IO6HO~ npH HCC~Ie~oBaHHH pa3hHqHblX BeILteCTB MeTOAOM Tep- 
MH~IeCKOrO aHaarl3a. ]-lor MaTeMaTnqecrHe COOTHOmert~i~ ~1~ //Byx KJIaCCOB ~H3HKO- 
XHM~qeCKHX npeBpat!2enH~, can3bIBalOmne TepMORHHaMH~ieCKHe xapaKTepHCTHKH npeBpameHH~l 
c napaMexpaMH nnrop )!TA (an~bqbepeHImaabnoro TepMn~ecKoro aHaaHaa), TeopeTHaecrne 
noJlo)KenHfl CTaTbVl nO~TBep~K~eHbl 3KcnepHMeHTaYibrlbTMn pe3yYlbTaTaMri. Bce 3KcnepHMeHTI, I 
npoBo~naHCb na yCTaHOBre }ITA -- 4, co3~IanHo~ B IdHCTHTyTe Mexa~.uyprnn riM. A. A. 
Ba~roaa AH CCCP. 
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